Be prepared to answer these questions without your calculator.

1. How many ways can 2 people be chosen from 8? Write your answer in _nP_r or _nC_r form and find the value.

$$\frac{1}{8} \frac{0}{2} = \frac{8.7}{2.1} = \frac{56}{2} = 28$$

2. How many ways can first, second and third placed be chosen from 6 participants? Write your answer in ${}_{n}P_{r}$ or ${}_{n}C_{r}$ form and find the value.

3. Write an infinite geometric series that has a finite sum. Explain how you know you can calculate the sum.

4. Use Pascal's Triangle to expand the binomials.

a.
$$(x-2)^4 = (a+b)^4$$

 $a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$
 $(x)^4 + 4(x)^3(-2) + 6(x)^2(-2)^2 + 4(x)(-2)^3 + (-2)^4$
 $(x^4 - 8x^3 + 24x^2 - 32x + 16)$

5. Find the number of terms in each series.

a.
$$7+5+3+...+(-15)$$

 $t(n)=7-2(n-1)$ $-15=9-2n$
 $-15=9-2n$ $-2+2-2n$
 $-15=9-2n$ $-2=n$

6. Write each series from question 5 in summation notation.

a)
$$\sum_{n=1}^{12} [7-2(n-1)] \text{ or } [9-2n]$$
 b) $\sum_{n=1}^{8} [1+4(n-1)] \text{ or } [4n-3]$

7. A pendulum swings 8 inches on its first back-and-forth motion and only travels $\frac{1}{4}$ the distance on each future back-and-forth swing. How far does the pendulum travel if it swings forever (or before it stops in real life)?

efore it stops in real life)?
$$S_{inf} = \frac{8}{1 - \frac{1}{4}} = \frac{8}{\frac{3}{4}} = \frac{9}{1 - \frac{4}{3}} = \frac{32}{3} \text{ inches}$$

$$10\frac{2}{3} \text{ inches}$$

You may use your calculator for these problems.

Combination and Permutation

8. Sarah needs to choose 9 people from her class of 20 for her softball team. How many possible ways can Sarah choose her teammates? Write your answer in ${}_{n}P_{r}$ or ${}_{n}C_{r}$ form and find the value.

20 Cq = 20.19.18.17.16.15.14.13.12 = 167,960 ways

9. Ms. Carr, Sarah's gym teacher, does not think it's fair for her to pick all 9 people for her team so Ms. Carr has chosen 2 people who must be on Sarah's team. How many possible ways can Sarah pick her team now if she must choose Ms. Carr's two students? Write your answer in _nP_r or _nC_r form and find the value.

She must now pick 7 individuals out of the 18 who are left.

Arithmetic Series and Sums

10. Find the number of terms in each series.

a.
$$19 + 26 + 33 + ... + 278$$

 $278 = 19 + 7(n-1)$ $266 = 7n$
 $278 = 19 + 7n - 7$ $38 = n$
 $278 = 7n + 12$
 $266 = 7n$
b. $20 + 17 + 14 + ... + -22$
 $-22 = 20 - 3(n-1)$ $-45 = -3n$
 $-22 = 20 - 3n + 3$ -3
 $-22 = -3n + 23$
 $-45 = -3n$

11. Find the **sum** for each series in problem 10 then write in summation notation.

$$\sum_{n=1}^{38} \left[19+7(n-1) \right] \text{ or } \left[7n+12 \right] \qquad \sum_{n=1}^{15} \left[20-3(n-1) \right] \text{ or } \left(-3n+23 \right)$$

$$Sum = 5643 \qquad \qquad Sum = -15$$

12. Find the sum of the series below.

$$\sum_{n=1}^{13} 4 + 8(n-1)$$

$$5(13) = (4+100)(\frac{13}{2})$$

$$t(1) = 4 + 8(1-1)$$

$$t(13) = 4 + 8(13-1)$$

$$4 + 8(12)$$

$$4 + 96$$

$$t(13) = 100$$

$$log(177147) = (n) log 3$$
 $log 3$

Geometric Series and Sums

13. Find the number of terms in each series

a.
$$a_1 = 8$$
, $r = 3$, $S_n = 708,584$ $(n = 1)$

$$708,584 = 8(3)^{n} = 8$$

$$3-1$$

$$708,584 = 8(3)^{n} - 8$$

$$1417176 = 8(3)^{n}$$

$$= \underbrace{(8(3)^{2} - 8)^{2} - 8}_{3-1} + \underbrace{(3)^{2} - 8}_{4-1} + \underbrace{(3)^{2} - 8}_{1417176} = \underbrace{8(3)^{2}}_{177147} = \underbrace{3^{2}}_{13}$$
13. Find the sum of each series below.

b.
$$-5 + -10 + -20 + ... + -2560$$

 $-2560 = (-5)(2)^{n-1}$
 -5
 $512 = 2^{n-1}$
 $\log(512) = (n-1)\log 2$
 $\log 2$
 $\log 2$
 $\log 2$
 $\log 2$

$$a_1 = 1.6, r = 2, \frac{2n - 1077720}{n = 14}$$

$$S(14) = \frac{1.6(2)^{14} - 1.6}{2 - 1} = 26212.8$$

14. Write the following series in summation notation.

$$\sum_{n=1}^{19} \frac{6+12+24+...+1572864}{6(2)^{n-1}}$$
Logarithmic Equations

$$\frac{1572864 = 6(2)^{n-1}}{6}$$

$$\frac{16}{6} = 0$$

$$\frac{109(262144)}{109(2)} = n-1$$

15. Rewrite each logarithmic expression as one logarithm.

a.
$$\log(4x) + 3\log(2x)$$

$$\log(4x) + \log(2x)^{3}$$

$$\log(4x) + \log(2x)$$

$$\log(5x) + \log(6xy) - 2\log(4y)$$

$$\log(2x) + \log(6xy) - 2\log(4y)$$

$$\log(2x) + \log(6xy) - 2\log(4y)$$

$$\log(2x) + \log(6xy) - \log(6xy)$$

$$\log(6xy) + \log$$

b.
$$2 \log(7xy) - \log(y^5)$$

$$\log(7xy)^2 - \log y$$

$$\log\left(\frac{49x^2y^2}{y^5}\right) = \log\left(\frac{49x^2y^2}{y^3}\right)$$

16. Solve the logarithmic equations for x.

a.
$$log_{16}(x) + log_{16}(x+3) = \frac{1}{2}$$
 b. $log_{4}(16x) + log_{4}(x) = log_{4}(400)$

$$log_{16}(x^{2}+3x) = \frac{1}{2} \quad 0 = x^{2}+3x-4 \quad log_{4}(16x^{2}) = log_{4}(400)$$

$$log_{16}(x^{2}+3x) = \frac{1}{2} \quad 0 = (x+4)(x-1)$$

$$4 = x^{2}+3x \quad x = -4(x-1)$$

$$16x^{2} = 400$$

$$16x^$$